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Introduction.

The Continuation of Invariant Subspaces (CIS) algorithm [1] and [2] produces a smooth

orthogonal similarity transformation to block triangular form of A(s).

e Smooth dependence on s: h; decreases if R(s) changes fast, h; increases if R(s) changes

slowly.

e Works if 3;(s) and 35(s) do not come close.
1. Want to detect bifurcations: A(s) crosses Re A = 0.

2. Want to ensure: only A(s) € X;(s) can bifurcate.

e An application: stability analysis of a simulation model of the reusable launch vehicle X-
33. Problem: choosing the points in flight that capture critical events affecting stability

and performance.

Background.

Theorem 1 Given A € C'([0,1], R*™*") with:
Y(s) = L1(s) UXa(s), X1(s)NXa(s) =0,
R(s) = R(Z1(s)), dim(R) = m > 0;
(i) There exist smooth T and @, @ orthogonal:

Q" (s)A(s)Q(s) :=T(s) = [ Tl()l(S) 228 ]

Q = [Q1 Q2], R =span(Q,), R+ = span(Q2).
(Z’l,) Let

= fll le

E21 T22

= Q" (0)A(h)Q(0),

Y € R solve algebraic Riccati equation
F(Y):=TpY — YTy + By — YTY =0.
Then Q(h) and T'(h) in (2) are given by

Q1(h) = (Q1(0) + Q0)Y)(I + YY) /2,
Q2(h) = (Q2(0) — QLO)YT)(I + YY) 71/2,

Ti1(h) Tia(h)

T - | Th® Te | = gt amom),

(iit) Let Yy solve the Sylvester equation
15:(0)Yy — YoT1:(0) = —Eay,
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and let h be so small that

[Ti2]| Il £ (Yo )l <

#(T) = -2l 2 ~
sep?(T1 + T12Yo, Too — YoT12)

< % (8)

Then (4) has unique solution Y and Newton method with initial guess Yj converges for R(f) <
1/12 .1
Here sep(A4, B) is the smallest singular value of the Sylvester operator:

. IAX - XB]|
D=

sep(A, B) = 0 if and only if A and B have a common eigenvalue. It is small if there exists a
small perturbation of either A or B that makes them have a common eigenvalue.

A practical CIS algorithm.

Replace the assumption (1) by
Zi(s) = {(s))iti}s Bals) = {8 }
Red > ... >ReA,, >20>ReA,, 11> ... > Rel,,
Re A, > ReA, 1 > ... > Re A,
ms(s) = m(s) —my(s) > mi >0,
m, My, ms vary; mt¢ fixed, typically, 2 < m7¢ < 4.

e Algorithm, one step: given Q(s), find Q(s + h):

— Can we actually compute Q(s + h)?

— Once Q(s + h) is computed, is it acceptable or it has to be modified (how?)?

1. Newton iteration for (4) fails to converge with hpip.

(a) Generically (Beyn et. al. 2000): real \,, A,;1 coalesce and become a complex
conjugate pair.

(b) Move App1 to $1(s) if my, < m7¢ ) and A, to Sy(s) if my > m’¢/. Recompute Q(s)
by (2).

2. Newton iteration for (4) converges.

(a) Test for an overlap

Wy = 0, ReA, > Rel\,41 (no overlap),
b 1, Re), < Re\,41 (overlap).

If ¥y = 1, decrease h to ensure that overlap is only in one real eigenvalue or in one
complex conjugate eigenpair.
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(b) Test for a bifurcation

Wy = 0, my(s) = my(s+ h) (no bifurcation),
271 1, my(s) # my(s + h) (bifurcation).

If ¢ = 1, update m, m,, and m;.

(c) If Yy = 1Py = 1, decrease h, if allowed, else fail.

(d) If ¥y = 1Py = 0, accept the point Q(s + h).

(e) If 1 = 0 & ¥y = 1, adapt m, m,, and my, if needed, and then recompute Q(s + h)
by (2).

(f) If ¢y =1 & o = 0, adapt m, m,, and ms by swapping or moving some eigenvalues
between ¥; and Y, (depending on whether m, < m7¢ or m, > m"®/, and whether

the eigenvalues in question are real or complex conjugate eigenpair(s)) and then
recompute Q(s + h) by (2).

Stability analysis of the X-33.

A co-operative agreement between NASA and Lockheed Martin resulted in development
of single stage to orbit reusable launch vehicle called the X-33.

e Simulation model of X-33 includes the 6 degree-of-freedom equations of motion and the
engine, aerodynamic, sensor, actuator, wind disturbance, mass property, guidance and
control system models.

e Flight control of the X-33 vehicle during assent mode involves attitude maneuvers through
a wide range of flight conditions. The vehicle dynamics are rapidly changing in time
and changing nonlinearly with respect to propellant usage, aerodynamics, engine thrust,
control surface usage, and control command generation.

e Stability analysis during powered operation: linearizing the system at various operating
points along its flight trajectory. It is not unusual for the system to be unstable (real part
of eigenvalue is positive) for a portion of ascent flight; however, due to the high velocity
nature of rocket flight, this instability might not adversely affect system performance
because this phase of flight is passed so quickly.

e A problem in stability analysis: choosing the points in flight to capture all events that
affect stability and performance of the vehicle.

Discussion.

Continuation/Bifurcation Analysis Future Work.
e Test approach with a sample RLV concept design.
— Perform the bifurcation and stability analysis for models like X-33 and identify re-

gions that need more analysis.
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— Compare the computational results with experiments.

e Develop a method that relates migration of eigenvalues into the right half-plane to ele-
ments of A-matrix and parameters in the nonlinear system of equations.

e Develop an efficient method to determine effects of parameters variations on magnitude
of eigenvalue \; with the largest real part. Idea (A; real), A(s)qi(s) = Ai1(s)gi(s). From

Eq. (2) with m =1
Ai(s) = g1 (s)A(s)a (s)- (9)

Hence the CIS algorithm produces A;(s) as a smooth function of parameters. Hence can
use minimization methods for —\; (s) for smooth functions to determine max A, (s) rather
than more expensive Monte Carlo.

e Addressing the issue of nonnormality. Recent results show that in the case of nonormal
matrices (when the set of the eigenvectors does not form an orthogonal set) eigenvalues
may not be a relevant tool to study stability. And one instead should use pseudospectra.
Our preliminary results show that A-matrices can be highly nonnormal. This issue has
to be investigated further.

Benefits of Continuation/Bifurcation Analysis Approach.

Continuation /bifurcation analysis addresses NASA’s needs to reduce vehicle development
cost and improve safety by aiding in the development of a more robust vehicle.

o Need to develop safer vehicles: identifying problematic operating conditions that would
have been missed by a conventional stability analysis.

e Need to reduce cost: possibly reducing the time spent in sensitivity analyses. If this
method of analysis can identify key parameters that affect vehicle stability, then a sensi-
tivity analysis can focus on just these parameters, reducing number of iterations needed.
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